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TECENICAL MEMORANDUM 1265

AMPLITUDE DISTRIBUTION AND ENERGY BALANCE OF SMALL
DISTURBARCES IN PILATE FLOW*

By H. Schllichting
STMMARY

In a previous report by W. Tollmien, the stebllity of laminar flow
past a flat plate was investigated by the method of small vibrations,
and the wave length A = ox/a, the phase veloclty - c,, and the Reynolds

number R of the neutral disturbances established. In connsectlon with
this, the present report deals with the average disturbance veloc—

ulv!

\, u|2 X V'2

ag function of the wall distance y for two speclal neutral dlsturbances
(one at the lower and one at the upper branch of the eq_uilibri{un curve
in the dR plane). The maximm value of the last two quantities lies
in the vicinity of the critical layer where the veloclity of the baslc
flow and the phase velocity of the disturbance motion are equel. The
energy balance of the disturbance motion is investigated. The transfer
of energy from primsry to secondery motion occurs chiefly in the nelgh—
borhood of the critical lsyer, whlle the dissipation is almost completely
confined to a small layer next to the wall. The energy conversion in
the two explored disturbances is as follows: In one osclllation period,
half of the total kinetlc energy of the disturbance motion on the lower
branch of the equilibrium curve is destroyed by dissipation and replaced
by the energy tremsferred from the primery to the secondary motion. For
the disturbance on the upper branch of the equilibrium curve, about a
fourth of the kinetic energy of the disturbance motion is dissipated and
replaced in one oscillation period. The requirement that the total
energy balsnce for the neutral disturbances be equal to zero 1s fulfilled
with close approximation and affords a welcome check on the previous
solution of the characteristic value problem.

ities 'ﬁ'a' and \|7'2 and the correlation coefficient

¥1pnp1itudenvertelilung und Energiebilanz der kleinen Storungen bel
der Plattenstrdomung." Nachrichten von der Gesellscheft der Wissenschaften
zu Gottingen, Neue Folge, Band 1, No. 4, 1935, pp. W7-78.
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l. Introduction

The numerous efforts, within the last decade, to solve the problem
of turbulence (reference 1) have at least produced some satisfactory
results for a certain class of boundary-layer profiles when their
gtabllity was Investigated by the method of small vibrations, with due
consideration to the friction of the fluld and the profile curvature
(reference 2). Referring to Tollmien (reference 3), who treated the
exemple of leminar flow past a flat plate, the writer investigated
several other cases: the Couette flow (reference 4), the emplification
of the unstable disturbances in plate flow (reference 5), and the
stabllizing effect of a stratification by centrifugal forces (reference 6),
and temperature gradients (reference 7). Every one of the investigations
was restricted to the sclutlon of the corresponding characteristic—value
problems, without calculating the characteristic function itself. Im
that manner, the wave lengths of the unsteble, hence "dangerous"”,
disturbances were identified as function of the Reynolds number. In
most cases, only the dlsturbances situated right at the boundery,
between amplification and demping, were determined. For these, Just
ag much energy is transferred from the primary to the secondary flow,

&s secondary-motlon energy is dissipated by the friction so that the
total energy balance 1s zero. )

A1l the stabllity studles made up to now were, for reasons of
methematicael simplicity, based upon an assumedly plane fundamental flow,
whlch depends only on the coordinate transverse to the direction of the
flow, and a plane superposed dlsturbance motion which propagates in form
of a wave motion 1n the prlmary—flow direction. While there 1s no
obJectlon to the limitation to the plane fundamental flow, since 1t is
frequently realilzed experimentally, obJection mey be raised to the plane
disturbance motlon because the disturbances accidentally produced in
practice are almost always three—dimensional. Accordingly, 1t might
appear as if the limitation to two—dimensional disturbances was all
too special. However, H. B. Squire (reference 8) recently demonstrated
on the Couette flow — this theorem is egually appliceble to boundary-—
layer profiles — that precisely the apeclfic case of the two—dimensional
disturbance motion 1s particularly sultable for the stablility study in
the followlng sense: According to Squire, a two—dimensional flow, which
is unstable against three—dimenslonal disturbances at a certain Reynolds
number, ls unstable agalinst two—dimensional disturbances even at a lower
Reynolds number. The two—dimensionel disturbances are therefore "more
dengerous" for a flow than the three—dimensionel. The critical Reynolds
number, which is defined as lowest stability limit, 1s thus obtained
precisely from the two—dimensional, not the three—dimensional, disturbances.

To galn a deeper insight into the mechaniem of the turbulence
phenomena from amall unstaeble disturbances, a more detalled knowledge
of the propertles of these small dlsturbances 1s necessary. The present
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report, therefore, deals first, with the distribution of the amplitude
of the disturbance over the flow section, that is, the calculation of
the characteristic functlions and second, wilth the study of the energy
distribution and energy balance of the disturbance motion. The Investi—
gations are based upon the disturbances of the laminsr flow past a flat
plate which are situated exectly at the boundary between amplification
and damping (neutral oscillations).

Chapter I
AMPIITUDE DISTRIBUTION

2., Discussion of the differential equation of disturbance.

Let TU(y) be the velocity distribution of the fundasmentel flow
(fig. 1) and V¥ +the flow function of the superposed disturbange motion,
which is agsumed as a wave motion moving in the x direction (direction
of primary flow), whose amplitude ¢ is solely dependent on ¥, hence

¥(x,7,%) = ply)etloxBt) - cp(y)eim(x—ct)

@ is real and A = 2%/a 1s the wave length of the disturbance;

B =B, + 1By and c = B/a are, in general, complex; T = 2K/Br is

the period of oscillation; Bi indicates the amplification or the damping,
depending upon whether positive or negative; Cp = Br/m is the phase
velocity of the disturbance. For the disturbance amplitude ¢, after
introduction of dimensionless veriables from the Navier-Stokes differentlal

equations, it results in a linear—differential equation of the fourth
order, the differential equation of the disturbance

(T - o) (" ~ a.acp) — T = — a_jl-{_((P"" _ EG.EQP" + a,)-{-q)) (1)

(R = UpB/v = Reynolds mumber, Uy = constant veloclty outside of the

boundary layer, © = characteristic length of the boundary-layer
profile = boundery-layer thickness, v = kinematic viscosity.) The
general solution @ of the disturbance equation is bullt up from four
particular solutlons @1, ..., ¢h

¢ = C19; + CgPp + C3P3 + C1Py (2)
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The boundary conditions @ =@' =0 for y =0 and y =w give
(es explained in the report cited in reference (5))

Ch =0 (38)
end for Cp, Cp, C3 the system of equations

C1®10 + CoPpp + C3P50 = 0
] T -
C1P10" + CoPpg  + CgP34" =0 L
(&)
C101g + Colpg = O

(¢va = Qug' + Wai V=1, 2) J

The subscript O indicates the values at the wall y = 0, subscript a
the values in the connecting point y = a to the reglon of constant
velocity. From (4) the equation of the characteristic value problem
follows as :

P10 P P30' | =0 (5)

This equation 1s discussed in the earlier reports for several cases.
It contalns, aslde from the comstants of the basic profile, the
peremeters a, R, c,, and o;. The complex equation (5) 1s equivalent

to two real equations, and, 1f limited to the case of neutral disturbances
(cq = 0), these two equations give, after elimination of c,, one

equation between o and R. This is the equation of the neutral curve

in the doR plane, which separates the unsteble from the stable disturbance
ettitudes, and was originally computed by Tollmien for the plate flow.

They are assumed to be known for the subsequent study (fig. 2).%1

IThe writer computed the neutral curve for the plate flow cited
under reference 5 again and found some differences wilith respect to
Tollmien's report. The newly obtained values are used in this study.

| |
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In the following, the amplitude and energy distribution is computed
for two neutral oscillations, one of which lies on the lower, the other
on the upper branch of the equilibrium curve (fig. 2). The parameters
of these two neutral oscillations, obtained from the earlier calculatlon,
are indicated in table 1.

For the calculation of the integration comstants Cy, Cp, 03
from (4), we put

Cp =1 (3p)

because the amplitude of disturbance remains indeterminate up to a
constant factor, the intensity factor of the disturbance motion. Thus,
for the other two constants

o
Cp = _ 1=
QQ&
r (6)
C—_J:__(Iﬁ'_a‘.q) -Q =_J;r(p_l§'.q)'._q)'
3 cp30 Pog 20 10 q’3o ®np 20 10 ]

The perticular solutions ml(y) end @,(y) are readily obtainable

by expansion in series from the so—called frictionless differential
equation of disturbance of the second order, which follows from the
general equation (1) by amission of the terms on the right-hand side
afflicted with the small factor 1/cR. The point U = c,, where phase

velocity of disturbance motion and basic flow velocity agree, and which
is termed. the critical point y = Ty is a singular point of the

frictionless differential equation of disturbance, which pleys a
prominent pert in the investigations.
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Putting

J ~ 3k J =¥k
=Yy a1

= Tgi W, = o cx,(a.—yk) = Oy (7)

where subscript k denotes the values at the critical points, the
frictionless solutions for lineare velocity distribution read

93 = & sinh(aqyy); @, = cosh(ayy;) (8)

and for parsbolic veloclty dlstribution

\%
1 2 3
a_yk—za.lyz+ea,2y2 oAy  + e
U“
2 X |
Py = g + by T, F By T+ cee +U—k,—CPl log y, for y,>0  (9)

= - 2 & - E <
By =Dy + By, boy,T A eee t o CPl(lOg[yal in) for y, <0

2The Blagius profile of the plete flow 1s approximated by a linear
and & quadratic function (fig. 1), nemely

S y/6 S0.175: U/uy = 1.68 y/5

o

A

0.175 S y/8 € 1.015: U/U, = 1 — (1.015 — y/8)° (72)

y/8 2 1.015: Ufu, =1

For the connection between B and the displacement thickness &% used
in figure 2, ®* = 0.341% ig applicable.



NACA ™ 1265 T

According to earlier data, the coefflclents are given by the equations

o9 2 2
a; = 1; a2=—32=-; a.3=—%—; au=—i%-,
8 = — 0.0013 .2 + 0.0083 cc,e)"'; ag = 0.0024 a,® + 0.0006 aeh'
bo=l;bl=0;b2=—l+d—'§-i (10)
by = 0.125 + 0.056 4,25 by, = 0.021 — 0.141 ay? + 0.042 ayt
by = 0,005 + 0,005 @,2 + 0.00k ay*
bg = 0.0015 + 0.0012 d,? — 0.0038 d,2)+ + 0,001k a26

The particulear solution cpl, wlth its derivatives, 1s regular
throughout the entire renge of flow (1 Sy, S0, 0¥y, S +1), and cen
be numerically computed with these data. Bubt the particular solution Ps

has ‘a singulerity, in which @,' Dbecomes logaritimicelly infinite in
the critical layer y = Ve The more detalled discussion has shown that

the friction at the wall, and in a restricted vicinity of the critical
layer, must be teken into consideration. The first gives the friction
solution cp3, the other, the friction correction for @,. Introducing

the new variable

n = (7 = 7) () /3 - T (1)

gives (only the greatest terms from (1) for @(n) belng taken into
account) the differential equation

U 1

icpllﬂ .+ qu)ll = GUK‘ (12)
k

from which follows the correction for @, near the critical layer, as

woll as the third frictlon—effected solution @ 3" The calculation of

these two solutions merits a little closer study.
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3. The friction solution ¢3

The friction solution P3 is obtained from the differential

equation (12) when the inhomogeneous terms encumbered with the small
factor ¢ are amitted; hence, from the differential equation

1@31111 + nq)3n _

Unusuel in this equatlon 1s that, in contrast to the complete disturbance
equatlion (l end to the frictionless equation of disturbance, the
depsndence of the parsmeters o, R, and U' by (11) enters only as

scale factor for 'y, and that it is not at all affected by U". As a
result, Q (n) can be computed once for all entirely independent from the

velocity profile. In this instance, Tietjens' report (reference 9)
constitutes.a valusble support. A fundamental system ¢3 Fl"

and ¢32 F " of equation (13) ig glven by

The expension in series of the Bessel functlons

_[z\P < (iz/2)20
JP(Z)'_ (§> VZ=OV£I‘(p +v + 1)

o
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/3 1/6
glves, when the constant factors (%) (1) /P (%)

and (%>_1/3(—1)_1/6 / r(%) are cmitted

T 13 . 19
F"(n) = q - 2 *— 3 -— y + o= e
213%ee7  4i37ele710+13  613°-L+7-10-13¢16°19
” u 10 16 '
+ 1 1 - 1 + 1 — G o
113500 3133.4.7.10  5!37.4.7:10-13-16
> (15)
6 12
an(ﬂ) - l — T] + T] — 4 v
p132.2.5 L13k.p.5.8.11
3 9 1
+ 1 2 - 1 + 22 — g ees
11372 3133.2.5.8 5:132.2.5.8.11-1h
J

Owing to the boundary condition ¢3" =0 for 1 = + o only the solution
aggregate ﬁIFl" + BEF2" approaching zero for great positive real 7
(B1, B, = integration constants) comes into question. For great =, this
can be represented by the Hankel function of the .second kind with the

2
subscript % and the argument %QB/ ) i“/h, hence by

ot 1) = 2 n @ [25302 msnp]
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Herewith, the looked—for solution of (13) — the constant factor being
put as q>3'(no) = cp30' for the sake of simplicity3 — is glven as

expansion in power series near 1 =0
- 1 n
= (B, + BE,") ’ (16a)
and as asymptotic expansion for great 7

@3"

%5 " (050" = )

Integrating between the limits o and 17 glves

P,' n 0
q_>3_' = Blf Fl“dn + B2f Fg"dq +1 (16p)
30 T I

(p3 TI T] " Tl rl "
5__7 = Bl Fl dndn + Be F2 dndn + 1 - Ny -D (16c)
30 no no no 1]0

where B and D are additional integratlon constents dependent
on n M, isthe n coordinate at the wall, y = 0; hence by (11)

1/3

Ny = Tl = Ty (RY') (11a)

The boundary condition q33'/cp30' =1 at y =0, that is, § = N 18
fulfilled by adding the term 1 in equation (16b).

3 —C3cp3o' 1s the gliding speed of the frictionless solution at the
wall. : '
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Tié‘b,jens computed the intdgration constants Bl, Be, B, D from
the fact that at a point ¢ = 7n;, which lies in the renge of validity
of both expansions, asymptotic expansion and power series expansion of
the solution of (13) up to and including the third differential quotient

must agree. The resultant equation system, set up and solved by Tletjens,
reads :

\

BlFl"' + 52F|2“1 = BFLI_"' (a)
BiFl“ + BZFQ“ = BFA“ (b)
n " n 1" | 1
By B "dy + ;32/' Fy"dg + 1 = BF), (e} > (17)
Mo o
non nopn_
Blf / F, d.r;d.q+[32f f Fy'dndn + n —q  —D = BF), (a)
MoV Mg 'f]o Tlo J

The integration constants Bj, Bo, B, and D can also be computed
by a simpler method than Tietjens', with the ald of the transition
formule from Hankel's to Bessel's functions, which reads™t

31/3(2)(2) - - 5551573_{én1/3 Jl/3(z) —-J_i/3(z):}

This obvlates the joining of the two expansions, mskes (17) superfluous,
and (17b) glves the exact values Immediately:

{3) |
- tn/6 2/3 N30 gy B otn/k 31/3 p(i) stn £ (18)
I‘(.32_> 1 3 3

—1.190 + 0.6871

>

0.789(1 + 1)

lFTollmien, who pointed this out to the wrlter, had this representation

as far back as 1929, but summarily took over the data by Tietjens for the
seke of simplicity. ’
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The factors Bl and D as function of 1, can then also. be indicated .
explicitly, namely

- -1
- 1 Ix 1 OF " OF
Bl - ( - /3>3 /3 P<§-> +L/; 1 o Ea]l/o' 2"dn}

D == ° " tana Pp [ mF"dd
=t Py 1 4ndn + g 2 dndnp — Bo,(0)
ﬂO no l'ﬂo nO

with

T

L (19)

BCP3(O) = 1By

Table 2 contains the results of a new calculation of TietJjens' value
carrled out by these formulas. The differences from TietJens' figures are

m n
insignificent. The values of F{", F,", JL F,"an = F{', JQ Fody = Fp!,

y 1 .
Up' F,'dn = Fy, JP Fp'dn = Fo as function of 7 are indicated separatgly
0 0

as real and imeginary part in table 3. Since, according to (15), these
quantities are either symmetrical or antisymmetric functions of N, this
table can be continued immediately according to the negative values of M.

For the two neutral oscllletions, whose amplitude and energy distri—
bution 1s to be computed, it is

1, = —2.63 and q, = —4.05
The corresponding values of ¢, according to (1la), are given in table I.
along with the integration constants Bl, Bo, D obtained by interpolation

for these N, values.

This takes care of all the data necessary for computing the friction
solution @B with 1ts first and second derivative as function of n by

the equations (16a, b, and c). Table U4 gives the thus obtained velues
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P3" P30 93

H ? ?
@30 @30 @30
is, according to equation (11),

of

as function of 1. The connection between v and y

I =T t e

In all cases, the friction solution ¢3 from the wall toward the inside

of the flow 1s very quickly damped out; but it still extends a little
beyond the critical layer for both ogcillations.,

4. The friction correction of @, in the intermediate layer

The second frictionless solution ?s behaves singularly at the critical
1
k
layer y =y, , nemely through equation (9) es ﬁ‘T(Y — ¥y0) Log(y -yk),
k

. "
so that @,' behaves as ﬁET 1 + log(y -yk?} and Qz“ beheves

n k
Uk 1

U -y

as

From the differential equation (12), in which only the greatest
friction terms are taken into account, follows a solution P, modified

by the friction, whlch Jjoins the frictionless solution at some distance
from the critical point. For this purpose Ps is expanded in powers

of the previocusly introduced small quantity ¢ = ((1'RU'k')"'l/3

CPE = qjeo + qual + eoe (20)

%55 belng chosen equel to unity. From (12) follows the inhomogeneous
differential equation

— iTIcPQ.l“ = i '.[_],1;—, (21)

mnn

Py

for Poq with reference to 1.
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On account of the very small value of €, 1 can assume great values
even &t small y — ¥y vaelues. An attempt is made to find such a

solution @p," of this equation, which for large 1, but small (y — yy)
Joine on to the frictionless solubtion

t

2 "
% % 1

For large n there shall be:

2
& %o Uy
U- ¥
dy2 x 1

(22) )

The corresponding homogeneous equatlon appeared earlier in the
calculation of Qg (equation (13)). It has the fundemental system F;"(q)

and F."(q) (equation (15)). A particular solution of (21) is

1t Uk“ n q F " " T‘ i
Poq () = - ﬁ;j' Fl o o dn — Fy o Fl dn

which can be verified easily by substitution, and the general solution
of (21) is ' ' '

U 11 n-l n
len(n) = K iFQ“C/g FlndTl _'iFl" . FandTl - chl“ + 02F2" ' (23)

-Ukl

The integration consteants c¢; and c,, which can be complex, are

1
evaluated from the boundery conditions. The quentity le' is complex

and shall join the real frictionless value (equation (22)) for large
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values of 1. By decamposition in real and Imagin
ary perts, the f
equations defining.the integration constants read ? ’ o

U 1
k Cp n _ 1t _
gt e G'(n) = Fpy"Fipt - P, "Fyt o+ F Tt 4 B,
" — 1% R 1 l

PO T ofuy ¥ oeadp” —opfp" = 3

T,
¢ n o _ 1 - — n .

g el T Bn) = = By "Fpy ' o+ Fou"Fap’ + Fy"Fpy' —F 0, 0 (W)

+ CJ-I‘FJ_i“ + cliFJrll + C&in“ + CeiFat‘" = 0

for g = i-ql

From (21), with the boundary condition (22), it follows that P51, is

sn entisymmetricel, and @u4" & symmetrical function of 7. Moreover,
" are symmetricel and F,.', FErl’ Fos Bt

1

gince FJr" Fei" Ferl s Fpy
sntisymmetrical functions of 1, the following must be true

cli = Cpp, = 0 (255-)

for reasons of symmetry. The other two constants c]_r’ Cyy 8TE obtalned

by solving the above equation system for 17 = T - For the present
calculation, n, = was chosen. The geries for the Bessel functions
are still fairly convergent for 17 = 4; bubt since differences of very

large numbers occur, the separate terms in (24) must be computed to
five diglts (table 3). For Cip 8nd cpy

C1p = 1.2852; cp; = 0.9373 (25D)

U T U t
k k .
80 thet WE] " = G@"(q) end fITq)Eli" = B"(y) can be caleulated. The

k k
values are given in table 5.
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ao
The values of q32 and a-g in the intermediate layer are obtained

Immediately by quadratures, namely

ao
7&%'- = I_IIE— {(l + log €) + G' (m) } (2¢a)

and.

dq) U 1t U n n U 1

21 k

= - —H'( ) = —/ E"'(n)dn = t%H'(n) (26b)
U’ U=k k

A check on this numerilcal calculation 1s glven by the fact that

dPpy

for T
transltion substitution for @2 deduced by Tollmien (reference 3) nmust

result again (compare equation (9)), which he obtained by discussion of
the asymptotic representation of the Hankel functions. Tollmlen's
translition substitution glves

Y 1
@% =?% Lk
&y /y=t= \ &y [y=—o T'

the present numerical calculation gives

(-dcpe-*‘) - <——dq)21> I B" (n)dn
dy jy=+= dy /y=—e U ' U—e

and the graphicel Integration gives

at transition from large positlve to large negative 1 the

00

fMFWMzﬁfrwm=am (27)

that is, complete agreement within the scope of mathematlcal accuracy.

RN
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The intermedlate layer near the critical point, which by the
present calculation reaches from sbout 7 = % to 73 = +4, is slready
gso wide at the first neutral oscillatlon that it reaches up to the wall
(wall Ny = -2.63); at the second oscillation with 7y = -4.05, the

boundery of the intermediate layer is reached exactly at the wall., With
this, all deta needed for the numerilcal calculation of the solution P55

corrected by the friction with ' -and cpz“, are available.

5. The numerical values of the integration constants

All three particular solutions Ql’ ¢2, ®_  are numerically known.

. 3
To build up the required solution ¢ <from it, the numericel values of

the integration constents C, and 03 must be accertained (equation (6)).

First of all, equation (2) is rewritten in a more suiteble form, nemely

P
® = ¢ + C Py + C3' ——ir (2a)
where equations (3a) and (3b) were resorted to and ¢3 wag replaced by
the quantity ¢3/¢30' which follows immediately from the numerical
calculations. Comperison with (6) gives
®

LI l | B ' o 1 t
3 =5, %20 ~ %10 CPo0’ *+ 910) (62)

This method of writing has the advantage that the two integration
constents C, end C3' in (28) are dependent only on the values of
the frictlonless solutions ¢l and P55 hence are relatively simple

to compute.

The values of @y , @, @la', Qeaf’ ®,.0 ®p, &nd the values

of 02 and 03' thus computed by (6) and (6a) for both neutral

oscillations are given in table 1. Tsable 6 and figures 3 and L give
the values of Ppns Py @r', @i' compubed with i1t, hence the desired

amplitude distribution as function of y/8.
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Outside of the boundary leyer, at y/5 > 1,015 +the simple formule

?,, C¥e™ ¢r' = —a¥e~ W

(29)
? =9,' =0
is valid for the amplitude dlstribution. The constant C¥* 1s so chosen

that the value of @.' Joins the already found value in y/8 = 1.015.
(Table 1.) '

6. The average fluctuation velocities and the correction factor
(compere reference 10)

Chenging to the real method of writing

ol = gg = K.fér' cos(ax — B,t) — 04" sin(ox — Bpt)l Uy
(30)
\4 ' K
vt o= — g; = Ka{}gr sin(ax — Byt) + @5 cos(ox — ﬁrt{} Uy

K 1is a freely available intensity factor. According to figures 3 and L,
the one phase (@r or @r') predominetes 1n both neutrel osclllations.

Tae amplitude distribution of u' and v' can be represented
most appropriately by forming, in analogy with the turbulent fluctuation
2 12
\jﬁ__ and XJL—3 where the dash
m m
denotes the time average value formatlon over & period T at a fixed
point x, y, or in other words .

velocity, the dimensionless quantities

: T
we = %f - u'2dt (T = vibration period)
t=0 :

“1‘4
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The result is

\w2 & [ 2. W?  Ee [ 2
i L TR Bl + @ (31)
Um \15 r i Um 5 r i
and
12 12
L +2v =K32 q9r'2+q31’2+0b2(¢r2+q312)} (32)
U
m

The last quantity glves the mean klnetic energy of the motion
disturbance. (See eq. 36.) These averages, which are Independent of x,
are represented in figures 5, 6, and 7 and tsble 7 for both neutral
vibrations as functions of y/®. The intensity factor itgelf was 80

chosen that the average value of \lu‘g in the boundary leyer 1s equal

o
to 0.05U_ <% f \ur2 gy = o.osum> (teble 1). The maximm amplitude
0 - '

for both neutral vibrations lies near the critical layer. The correlation
factor between u' and +v', which is completely independent from the
intenslty of the motion disturbance, can then also be calculated. It is

T A ETL
k(u', v') = —-—l—% Wvtat = ————
\]u,z w2 Jo \lu'2 12
Pr' Py — P04
k(u', v') = r 1 _rd ' (33)

V(Cpriz + cpira) (q>r2 + que)

The correlation factor is likewlse dependent on y/® only; its
variation is indicated in figure 8 and table 7. It i1s negative almost
throughout the entire range of the flow, for both neutral vibrations,
as 1s to be expected, since, owlng to the positive d.U/d,y, positive u!
is usually coupled with negative v' and negative u' with positive +'.
The maximum velue of k 1is -0.17 and -0.19, respectively. It is inter—
esting to compare the theoretically established correlation coefficient
with Townend's date in a developed turbulent flow (reference 11). The k
values of -0.16 %o _0,18, obtalned for the flow In a channel of square
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cross gectlon at various distances from the axis, are of the same order
of magnitude as those obtained by the present calculation for the
incipient turbulence.
Chapter II
ENERGY DISTRIBUTION
T. The kinetic emergy of the disturbance motion.

Having established the amplitude distribubtion for the two neutral
vibrations, the energy of the disturbance motion can be computed. The
total kinetic energy of the disturbance motion in & layer of unit height,

which, in x direction, extends over a wave length A and in y direc~—
tion from the wall to infinity i1s

A o
X= y= .

oy, 2 j; 0272 0172 4 P02 + 042 aly/6) (34

The energy dE of the secondary motion in a strip of width dy
and length A 1is accordingly

i
o

% = %%UmEKE{quIE + cpi:E + a2(cpr2 + cpie)} (35)

Besides,

dE  u'? + v'2 : -
0. 3—-—-=_——— (36)
= 7 2 |

E, 1is the baslc—flow energy in a layer of unit helght, length A, and
width O (compare equation (32)). Figure 7 shows the dimensionless )
energy distribution by equations (35) and (36). The energy is strongly
concentrated near the critical lsyer. To obtaln the totel energy E,
the integral (34) must be evaluated. Dividing it in two parte with the

limits O < y/5 S 1.015 and 1.015 S y/5< ®, the first portion is

~
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obtained by graphlcal integration based on the computed amplitude
distribution. The second portion is obtained analytically by (29),
namely

f [q’r'e + cPi'g + (e, + <P12):] a(y/8) = aboxBe™2-0390
y/3=1.015

The results of the evaluation are glven in table 1.

Now the enérgy of the disturbance motion is compared with the basic—
flow energy E, in the space of unit height and surface area A X O.

Tt is, by equation (7a)

ropd
B, =2 f f U(y)axdy = 0.533 5U,2A8 (37)
2 Ux=0 y=0 _

Hence, for the ratio of energy of the secondary motion to the energy
of the basic flow E/E, +the values presented in table 1 are obtained.

8. The energy balance of the disturbance motion.

Consider the time variation of the secondary—motion ensrgy of a
particle that moves with the basic flow, hence

PSR R T

For stable disturbances, the total change of energy of the secondary—
motion is gfffD']g u'? + v'2) dv < 0, for unsteble disturbances > O,

and for neutral disturbances = O, the Integration extending over the
entire range of the particular flow. Participating on the veriation

of the secondary-motion energy are: firgt, the transfer of kinetic
energy from the primery to the secondary flow, or vice versea; second,
the pressure veriation; and, third, dissipation. For neutral vibrations,
the total energy balance is not only equel to zero for the entlre space
in question, but for every polnt y of the cross sectlion, the energy .
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Increase per vibration periocd T = Qﬁ/Br 1s also equel to zero. This
is easily confirmed in the following manner: It is

T D
g 5t w2 4+ v'?)dt
+=0

T T
e 9 ¢, 12 12 e Q(.12 ' 2
) /l 5E(u + Vv )dt + 5 Ud[;=o 5;(u + v )dt

T T H
f <u' .ai_ + -V-' a_v-_> d_t = O
-0 0 ox ox

The first term disappears by reason of the periodicity of u' and v'.
The seame holds true when the last term for wu' and v' is entered
according to equation (30). Thus, the energy increase per vibration
period T 1s equal to zero at every point x, y for a neutral
vibration.

n
o
ﬁ~
M
+
4—
L Moy
+
O
&

It 1e interesting to see how the several factors enumerated ebove
participate on the energy conversion in a speciflic case. For both
specific cases of neutral dlsturbence the calculation of the energy
1s carried out for a plene basic flow and a plane disturbance motion
according to Lorentz (reference 12)

Dt Ox dy

D {%(u,e . v,e)} - a2 | awe)

ovt  du'\? S O ¢ 441
- (S;T--ﬂ5§f> + K {Ez(vlg ) -5§(u ¢ i}

where

' = = — =—, U = coefficlent of viscosity
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The first term gives the transfer of energy from the primary to the
secondary flow, the second gives the contribution resulting from the
pressure variations, and the third and fourth terms, the loss of energy
by dissipation. After integration of this term with respect to y over
the total width of the laminar flow from y =0 to y =« and with
respect to x over a wave length A of the dlsturbance, the second and
fourth terms diseppesr, since u' &and v' disappear for y =0

eand y = «» and with respect to x have the period A. Thus, the
growth of the energy per unit time in a layer of unit height and base
area 0 <y <o, O0<x<A lis:

-—pf J utv! —d.xd,y—uf / v )dxdy (39)
x=0 =0 y=0 (y=0 ax

The first integral gives the total energy pessing from the primsry to
the secondary motion; the second, the total dissipation. The portion
of the energy due to pressure verliatlon is removed by the integration.
The two energy portlons for the two neutral disturbances are evaluated.
Through substitution of (30), followed by integration with respect

to x, we find

2 DE ® ' 1 2 " " 2
>T Dt aK2U f'q=0 (cpr Py — 9Py ) g-yndy—HUm A:@ {(@r —cr?tpr)

+ (q)l“ - a?q)i)a} dy
or
A DE
T, D%

e; and ey denoting the dimensionless energy integrals

- 2 P2
= 2nK (el+62) XSEUm

(40)

a(u/uy)

) a(y/?) =«/o ey 'd(y /o) (h1a)

o) = _l/; (Pr'Qy —PPy') ————
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2=~ c‘lﬁ\/; {(q’r" - oFop)® 4 (4’1" - “2%)2} a(y /o) =L/; op'd(y/8) (41v)

To find the energy change of the disturbance motion in the vibration
period T(T = X/cr, ¢, = phase velocity), this energy change is referred

to the total kinetic energy E of the secondary motion which is glven
by equation (34). From (40) follows then the specific energy change of
the dlsturbance motion as

U [« ]
T DE _Um _ox : :
Eo Dt op 0.533Z J, (e1' + ep')a(y/3) (k2)

where Z = 0.432 and Z = 0.810 for the first and second neutral
vibration, respectively, while U'm/cr = 2,86 for both neutral vibrations.

The local energy trensfer from primary to secondary motion (1) and
the local dissipation (2) for the two neutral vibrations 1s then

5 d . ' . .
5 E(AE):L,E = 78.0e1,2 or = 1+1.6el,2 (43a, b)
when
T DE _ JAY:H
Dt

The values of e, 2' (equations k4la, b) can be obtained (teble 8) on
3

the basis of the computed amplitude distribution for both neutral
vibrations. Figure 9 represents the local energy conversion. The
dissipetion in well proximity is seen to be extremely great, while the
critical leyer is of no particuler importance for the dissipation. But
the energy transfer from the primary to the secondary mcétlon 1s greatest
iIn the neighborhood of the critical layer, while at the wall and farther
outside it 1s very smell. The curve is similaer to that of the correla—
tion (fig. 8), as anticipated.

The graphical integration of e;' &nd ep' gives the values

indicated in table 1. The energy balance g—i: =0, or o + ey =0
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for the neutral vibratlons 1s therefore fulfilled with satisfactory
approximation5, and constitutes a very welcome check on the rather
compllcated solution of the characteristlic value problem.

The total energy transferred in vibration period T from the
primary to the secondary motion is

(AE)l/E = 78.061 or Ll.6eq
and the totael energy dissipated

(AE)E/E = 78.0e, or ULl.6e,

These figures are also shown in table 1. Thus, at the first neutral
vibration, about half of the secondary-motion energy is destroyed by
dissipation during one vibration; at the second neutral vibratlon, the
energy conversion is only about half as great.

At the second neutral vibretion, the vibration period is a little
greater than at the first, that is, as 1s readlily obtainable from the
data of table 1, is

= & = . ll- —v-—' = 2—:‘t = - )'l' .V_
T, (ﬁr) 10.1 x 10* X 1, (Br) 14.8 x 10% Yo
1 Uﬁ 2 Uﬁ

To illustrate; For a plate flow in water with

<
il

0.01 cm?sec—i; U, =20 cm sec Tt

5According to the present calculation, the dissipatlon for both
vibrations is somewhat greater than the trensfer of energy from the
primery to the secondary flow. This 1s due to the fact that in the
stability calculation only the dissipation of the friction solution ¢3

was taken into account, while the dissipation of the frictionless vibra—
tion (Ql, @2) was ignored. But, in the emergy equation, the dissipation

of frictionless and frictional vibration was computed and is therefore a
little greater. Thus, the "neutral vibrations" have, exactly computed,
still a little damping, and the indifference curve (fig. 2) is, as a
result, shifted a little toward the inslide.
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the perlods of vibration are

Tl = 2.50 sec; T2 = 3.70 sec

Thus, vibrations of comperatively great periocds are Involved.

Translated by J. Vanier . o
National Advisory Committee
for Aeronautics
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TABLE 1

THE PARAMETERS OF THE TWO NEUTRAL VIBRATIONS OF THE PLATE FLOW

First neutral|Second neutral
vibration vibration
ad 0.466 0.737
(U B/v) 2.62 x 103| 6,08 x 103
B,0/u,) .163 .258
»350 .350
Ty 209 . 209
U' 1.625 1.625
" /o ! — ol —. 1ok
L% 2,63 4,05
1/e 12.6 19.k
8 .0695 { —. 0470
1 +.1021 +.02761
8 {;—.1526 { .0368
—. 07361 —~. 06501
D {1.374 { .395
+.2001 +1.241
Pl 416 435
P’ . . 040 .097
Py 211 .306
¢2a' : —2.4h25 -2,240
®1q .234 A17
Ong, —2,327 —2,014
c, .101 .207
! 1.00 1.011
glo, —oi | Lo
20 +1.5631 +1.5631
—-1.,00 —.988
C3' ' —.1571 { —-.3251
o . 706 1.075
K 15l 1166
11.015 2 2 2(m 2 2
/ {@r' + 0" + e (P,S + Py )} dy /8 371 . 631
0
[w [ Yay/o .090 .183
(/1.015
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TABLE 1

THE PARAMETERS OF THE TWO NEUTRAL VIBRATIONS OF THE PLATE FLOW ~ Concluded

First neutral vibrabtion Second neutral vlbration
Z 0.432K> 0.810K2
EO
2 0.00913 0.0110
EG
o X 103 5.75 6.39
o, X 103 —6.16 —7.10 -
AR
( E)l 0.447 0.265
(am),
= -0.479 ~0.294
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TABLE 2

NACA TM 1265

NEWLY CALCULATED VALUES OF By AND D

g Bl D

0 0.387 + 0.6721 0.672 — 0.3871
0.5 0.3%1 + 0.3661 0.770 — 0.3801
1.0 0.262 + 0.2131 0.892 — 0.3501
1.5 0.192 + 0.1k21 1.023 — 0.2611
2.0 0.132 + 0.1131 1.202 - 0.1351
2.5 0.0822 + 0,10311 1.358 + 0.1241
3.0 - 0.0332 + 0.09721 1.397 + 0.5191
3.5 -0.0165 + 0.07821 1.139 + 1.0231
4.0 —0.0465 + 0.03231 0.493 + 1.2141
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TABLE 3
THE PARTICULAR SOLUTIONS OF P AS FUNCTION OF 1
[ Compare equation (15):)
1 1 1 1
1 Fio | T11 | ¥ Fot Fir Ty For' | Tt
0 0 0 0 0 0 0 0 0
0.5 0.021 | 0.000| 0.125 | 0.000 0.1250 | 0.0005| 0.5000 | 0.0026
1.0 0.167 | 0.003 | 0.500 | 0.008 0.4998 | 0.0167| 0.9992 | 0.0k17
1.5 0.563 | 0.032| 1.122 | 0.063 1.1186 | 0.1264 | 1.4865 | 0.2065
2.0 1.318 | 0.177| 1.97h | 0.266 1.9368 | 0.5292| 1.89088|0.6588
2.5 2.59 0.678 | 2.97 0.797 2.7503 | 1.5799| 2.0223 | 1.554k
2.63| 2.87 0.901 | 3.2k 1.022 2.90 2.02 1.95 1.88
3.0 3.97 1.9% | 3.86 1.91 2.9208 | 3.6995| 1.3354 | 2.9269
3.5 5.07 4,55 | 4.02 3.72 0.9512 | 6.8796| —1.0850 | 4.2113
4,0 4.20 8.70 | 2.35 5 ~5.6379 | 9.2445| -6.1155 | 3.3059
k.05| 3.84 9.13 | 2.00 5.89 ~6.62 9.20 -6.76 2.90
i antisy. 85, gy . antisy. 57 antlsy. | antisy 8y .
!'l Fiow | Fuat | Tt | Fa" || Fre™ ) ™| ™ | Ty ™
0 0 0 1 0 1 0 0 0
0.5 0.5000| 0.0052| 0.9999| 0.0208 0.9998| 0.0417| -0.0010| 0.1250
1.0 0.9980| 0.0833| 0.994k| 0.1666 0.9861| 0.3331] -0.0333] 0.4999
1.5 | 1.4661| 0.4206( 0.9368| 0.5595 0.84k2| 1.1165| -0.2525| 1.1072
2.0 1.7472] 1.3108] 0.6469| 1.2939 0.1187| 2.5541| -1.0533| 1.8229
2.5 1.3100| 3.0463| —0.3215| 2.3124{| -2.2818| 4.3761| —3.0889| 2.0809
2.63] 0.941 | 3.64 -0.776 | 2.58
3.0 | -1.1161| 5.4735| —2.7429] 3.0209|| -8.1612| L.7949| —6.8785| O0.l417
3.5 | =7.631%| 6.7189| —7.2934 1.4618||-18.5245| —1.7400|-11.0222| —7.8189
4,0 [-19.4902] 0.6805|-12.5621|—6.6661||-27.2703[—L26.6992| —7.4580|—L6.7961
4,05{—20.94% |-0.806 |-12.92 |[-8.10
antlsy. 8y . 57 . antisy g5 . antisy.| antisy. 8Y .
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TABLE &4

THE FRICTION SOLUTTION P3 AS FUNCTION

OF y/® AND q

First Neutral Vibratlion

.1 1t 1 ]
oo | o3 | Fa | Far | ¥ | Far | Pa
l J 1 1 t t 1 '
@30 @30 CP3O cP3O * c[)30 q>3o
-2.63 | 0 ~6.40 T.65 1 0 -0.111 | ~0.0159
-2 .050 | -5.67 .79k .665 .188 —. 069 —.0099
-1 .130 | —3.04 —1.801 .329 .106 —.029 .0029
0 .209 | -1.92 -.932 .136 | —.012 —.009 .0061
1 .288 —.995 113 019 | —-.040 —-.001 .0035
2 .368 —.202 .290 | =-.025 | —,018 0 .0010
3 L7 .063 076 { —.027 | —003 0 .0005
L4 577 -.076 —-.012 | —.020 012 0 .0006
Second Neutral Vibration
—4.05 ~17.7 34 1 0 -0.0204 | -0.0639
~3.5 .029 | -17.6 8.22 460 519 .0001 —.0554
=3 054 —9.71 -3.08 .106 534 .0070 —.0415
~2.63 Noy¢! —.91 4,67 -.030 455 .0076 —.0322
-2 .105 —272 | -3.88 -.103 .309 .0051 —. 0202
—1 157 1.378 | =2 —. 058 .166 .0005 ~.0091
0 .209 717 | =1.260 | O .084 —.0008 —.0035
1 261 —.019 -.679 .016 .035 —.0002 -.0012
2 .313 —.194 —.155 .007 .013 0 0
3 .361 —.058 019 | O .012 0 0
L 415 .039 0 —.005 .01k 0 0

W
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TABLE 5

THE FRICTION CORRECTTION q>3 IN THE

INTERMEDIATE LAYER AS FUNCTION OF g

n ¢"(n) " (q) G'(n) E'(q)
0 0 1.285 —0.7T4 -1.570

.5 Ah3 1.165 —.659 —.953
1 .46 857 —.354 ~. 448
1.5 .839 .483 .051 ~.118
2 .T67 .160 1458 .035
2.5 589 | —,018 .798 073
3 438 —.072 1.056 .048
3.5 .325 —-.055 1.243 .013
4 .250 0 1.386 0

G (=) = —G"(n)5 E"(=n) = E*(n)
&' (n) = G (q) 3 B (—n) = —x — B (1)



34

NACA TM 1265
TABLE 6 :
DISTRIBUTION OF AMPLITUDES @, @,, @.', @i', @r", ¢i“
AS FUNCTION OF y/®
First Neutrel Vibration

y/8 P Py Py o, " ?." P,"

0 0 0 0 0 7.885 —6.615
.050 .011 —.0040 A1 -.135 6.235 —.003
.090 .032 —.0080 .620 -115 4,580 770
.130 .059 —.0112 .782 -.025 3.200 1.717
.170 .090 —.0111 .896 042 2.355 l.240
.209 127 —.0088 976 .069 1.778 A3l
.250 .166 —.0063 .986 .070 —-.112 —.220
.290 .203 —. 0041 975 .058 —-.699 —.576
.370 276 —.0010 .831 | .018 —1.543 - 347
1451 .335 0 670 .005 -1.778 -.015
.531 .380 0 .510 —.003 ~1.641 -.016
612 NN 0 .361 0 —-1.606"7| 0
.693 438 0 .23 0 -~1.51k 0
LTTh 453 | -0 .11 0 —1.431 0
.854 1458 0 .007 0 ~1.364 0
.935 455 0 -.101 0 -1.303 0

1.015 445 0 —.205 0 ~1.252 0
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TABIE 6
DISTRIBUTION OF AMPLITUDES @, P, 9., @', cpr“, cpi“
AS FUNCTION OF y/3 — Concluded
Second Neutral Vibration

/8 ., Py P, P, P,." ;"

0 0 0 0 0 28.54 —27.89
.029 .010 —.0038 . 720 —-.337 20.27 —£.30
.054 .033 —.011k 1.104 —.237 9.16 6.35
0Tk 057 -, 0140 1.245 -.113 4,25 6.28
.105 .096 —. 0148 1.333 .052 L78 3.60
157 .168 —.0086 1.350 .129 .558 —-.27
.209 .236 —. 0041 1.306 076 -1.218 —1.54
.250 .287 0005 1.203 .01k —2.967 -1.31
.290 .333 .0002 1.091 —.016 —2.961 —.334
.370 409 0 827 -.016 —2.86 J1hl
51 1469 0 607 0 —-£2.58 0
.531 .507 0 409 0 —2.21 0
612 .532 0 2h7 0 -1.93 0
.693 5h7 0 .105 0 -1.72 0
<TTH .550 | © -.026 | © -1.56 0
854 .Sl 0 —.148 0 —1.4} o]
.935 .527 0 —.260 o] -1.32 0

1.015 .508 0 —.367 0 —1.23 0

35
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TABLE 7

THE MEAN FLUCTUATION VELOCITIES V\u'Z, dv'a, THE KINETIC

ENERGY OF THE DISTURBANCE MOTION u'? + v'2, AND THE

CORRELATION COEFFICIENT k AS FUNCTION

OF y/5. [EQUATIONS (31), (32), (33)]

First Neutral Vibration

2 —T- 12 1 2

y/® 10 EL";'E 102 \&_E 102 ‘_’:__iév___ —x

o} o} 0 o} 0
.050 L5 0546 .198 .032
.090 L7 158 .20 061
.130 .80k .287 .648 .155
.170 .922 3L .854 .169
.209 1.005 .608 1.019 .140
.250 1.016 .795 1.040 .109
.290 1.003 973 1.019 064
.370 854 1.322 .T48 .022
L51 .639 1.605 .501 L0075
.531 .52k 1.820 .309 0
.612 .371 1.98L A77 0
.693 - 2.098 .10L 0
STTH 121 2.170 .062 0
.85L4 .007 2.193 .048 0
.935 .103 2.180 .059 0

1.015 211 2.108 .090 0

1.1 .203 2.027 .082 0

1.2 .193 1.935 075 0

1.3 .185 1.849 .068 0

1.4 176 1.763 : .062 0

1.5 .168 1.681 057 0
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TABIE 7

THE MEAN FLUCTUATING VELOCITIES \lurE,\lvxE,

THE KINETIC ENERGY OF THE DISTURBANCE MOTION u'Z + v'©,
+ AND THE CORRELATION COEFFICIENT k AS FUNCTION OF y/s.

EQUATIONS (31), (32), (33) =— Concluded

Second Neutral Vibration

37

=2 \l_ 12 12
7/5 10 Y- 102 —I‘T"—E- 102 Bt —x
m m U
m
- 0 0 0 0 0
.029 .661 .0655 433 0
.05k . <937 .21k .869 121
O7h 1.038 .359 1.068 170
.105 1.108° <595 1.218 .191
157 1.127 ‘ 1.028 1l.262 ' 146
.209 1.086 1.445 1.190 076
.250 .998 1.755 1.019 .010
.290 .906 2.0k 854 —.015
.370 .686 2.50 .528 —.019
L4510 .504 2.87 .332 0
.531 .340 3.10 .208 0
.612 .205 3.26 146 0
.693 .087 3.35 .118 0
TS .022 3.37 117 0
.854 .123 3.33 124 0
.935 .216 3.22 .149 0
1.015 .305 3.11 .187 0
1.1 .292 2.925 A7l 0
1.2 272 2.72 146 0
1.3 .252 2.53 .126 0
1.4 .234 2.35 .109 0
1.5 .218 2.18 .093 0
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TABLE 8

THE LOCAI. ENERGY CONVERSION 1) = TRANSFER FROM
PRIMARY TO SECONDARY MOTION, 2) = DISSIPATION
EQUATIONS (41) AND (43)

First Neutral Vibratlion

)
/8 o' X 103 o' X 103 %%(AEH z %(AE)Q
o} 0 86.9 0 —6.78
.050 .268 31.8 .021 -2.48
.090 2.150 17.6 .168 —1.37
.130 12.25 10.8 .955 —. 84
170 23.25 5.73 1.814 —145
.209 28 2.6L 2.18 -.21
.250 27.30 .06 2.13 0
.290 22.85 .72 1.78 —.05
.370 7.49 2.20 584 - 17
451 1.885 2.80 o147 —-.22
.531 -1.102 2.43 —.086 -.19
612 0 2.36 0 - 18
.693 0 2.12 0 —17
TR 0 1.92 0 —15
854 o] 1.75 0 - 14
.935 0 1.61 0 -.13
1.015 o} 1.50 0 -.12
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TABLE 8

THE LOCAL ENERGY CONVERSION 1) = TRANSFER FROM

PRIMARY TO SECONDARY MOTION, 2) = DISSIPATION

[EQUATTONS (L1) AND (43)] — Concluded

Second. Neutral Vibration

/5 o' x 103 | ' x 103 %%‘(AE) N %%(AE)E
0 0 320 0 —13.31
.029 1 83.6 —. Ol -—3.148
.054 .g.sh 2k .3 .326 —1.01
OT7h 18.145 11.15 .T68 —~ 46l
.105 41.5 2.61 1.726 -.109
157 55.6 Ol 2.310 —.002
.209 37.5 8ho 1.560 —.035
.250 5.22 2.31 217 —.096
.290 7.97 2.01 —.331 —.08L
.370 ~8.44 1.91 —.351 —.079
A51 0 1.80 0 —.075
.531 0 1.38 0 —.057
612 0 1.01 0 —.042
.693 0 819 o} —.034
STTh 0 .695 0 —.029
.85k 0 .608 0 —.025
.935 0 520 0 —.022
1.015 0 L1458 0 —-.019
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Figure 2.- The zone of the stable and unstable disturbances of plate flow.
I = first neutral vibration. II = second neutral vibration.
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Figure 3.- Real and imaginary part Pps Py q:r', qai' of the amplitude of
disturbance motion plotted against wall distance for the first neutral

vibration.
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Figure 4.- Real and imaginary part 9., Piy Pp's ®;' of the amplitude of

disturbance motion plétted against wall distance for the second neutral
vibration,
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Figure 5.- The mean fluctuating velocity in the x direction u'z/UIn
plotted against the wall distance for both neutral vibrations.
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Figure 6.- The mean fluctuating velocity in the y direction \/ v'z/Um
plotted against the wall distance for both neutral vibrations.
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Figure 7.- The mean kinetic energy of the disturbance motion u? 4+ v2 m2
plotted against the wall distance for both neutral vibrations.
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Figure 8.- The correlation coefficient k = %—2 plotted against y/s
u'l.y'

for both neutral vibrations.
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Figure 9.- The local energy conversion of the secondary motion for the
first and second neutral vibration. I (1), I (1) = energy transfer from
primary to secondary flow; I (2), II (2) = dissipation.
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